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Introduction

This document analyses and simulates the behavior of a digital transmission system to
have a better understanding of the concept behind these types of telecommunication.
The document is split into two main parts:

I Analysis. The first part of the document analyzes the transmission system
properties following the tasks of the course project guidelines. The numerical
outcome of these tasks is summarized in the raw results at the end of the analysis
part of the document.

II Simulation. The second part of the document focuses on the functions
used to properly simulate a digital transmission system. In the simulation part,
there will be the explained MATLAB code produced to perform all the processes
described in the general schematic.

The full project can be found and downloaded on the public GitHub repository
imAlessas/transmission-simulation.git where it is possible to find the full MAT-
LAB code of the project and the LATEX code of the documentation.

General schematic

The full schematic - containing every step - of a transmission system is presented in
figure 1. Before exploring the mathematical background hidden between the steps, it
is crucial to understand what every phase of the system means.

⋄ Source. The source device is whichever device is sending a signal; it could be a
television, a computer, a smartphone, or anything else.

⋄ Formatting Device. The formatting device’s task is to translate the information
from analogic to digital which translates into sampling the continuous analogic
signal and creating a discrete digital signal that can be transmitted through
digital devices.

⋄ Source Coding. The source coding goal is lossless data compression. Sure
enough, through the Shannon-Fano source coding, the symbols transmitted are
encoded to reduce the average codeword length.

⋄ Channel Coding. The channel coding goal is to add some control bits that will
help detect and eventually correct the errors that occurred during the transmis-
sion.

⋄ Interleaving. The interleaver is needed to transform package errors into inde-
pendent errors. This is achieved by changing the ordering of the symbols that
will be transmitted.

⋄ Scrambling. The scrambling procedure helps with the synchronization between
the two devices and improves the security of the transmission. This is achieved
by adding a pseudo-random sequence to the symbols before the transmission.

⋄ Modulation. The modulation process’ goal is to match the spectrum of the
transmitted signal with the transmission channel bandwidth making the signal
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Figure 1: The diagram of the digital information transmission system.

more noise-immune and increasing the data-transfer rate; these operations are
performed by the modulator. There are different types of modulation, the one
utilized in this project is the Binary Phase Shift Keying, which is one of the
most effective modulations against noise.

⋄ Noise. The noise is a crucial obstacle to overcome to have a successful trans-
mission; the noise is the main reason for a wrongly transmitted symbol. There
are different types of noise, some of them are generated by other transmissions,
others are due to the physical medium and others are caused by the intermedi-
ate devices between the transmission. Nevertheless, in every transmission, there
will be the Gaussiam White Noise which is a thermal noise caused by the Big
Bang.

⋄ Demodulation. In this phase the demodulator device, after receiving the dis-
turbed signal, will try to detect the signal to regenerate the original one. Some-
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times the noise energy will be stronger than the signal energy generating errors
that will be corrected in the next steps.

⋄ Descrambling. The descrambling procedure is the opposite of the scrambling.
The added pseudo-random sequence, after the reception is subtracted by the
descrambler.

⋄ Deinterleaving. The deinterleaver reorders the transmitted symbols in the op-
posite way that the interleaver did. In such a way the burst errors that occurred
during the transmission will become single errors that can be easily recovered.

⋄ Channel Decoding. The channel decoding process uses the added bits during the
channel encoding to perform an error correction algorithm that will drastically
decrease the error rate of the transmission.

⋄ Source Decoding. The source decoding procedure decompresses the received
data into the original symbols. This is achieved by one of the source coding
properties: symbols are easily detected because there are no shorter codes at
the beginning of longer codes.

⋄ Formatting Device. During the transmission this device converts the signal
from analogic to digital, during the reception of the signal the formatting device
translates the discrete digital signal into a continuous analogic signal.

⋄ Destination. The destination device is whichever device will receive the signal.
Likewise the source one, the destination device could be a satellite, a smart-
phone, a server, or anything else.

Initial parameters

The parameters used in this project have been assigned in a datasheet and are reported
in the following list:

· Symbol duration: 60 ns, also called τ ;

· SNR: 8.1 dB;

· Source code: Shannon-Fano coding;

· Error correction code: cyclic coding with codeword lengthm = 31 and generator
polynomial z5 ⊕ z2 ⊕ 1;

· Carrier frequency : 2.5 GHz;

· Modulation: Binary Amplitude Shift Keying (BPSK) with the phase shift of π.

In addition, the source data (alphabet) and the symbols’ respective probabilities are
summarized in the following table.

6



Source 7

a1 0.11
a2 0.07
a3 0.09
a4 0.01
a5 0.06
a6 0.06
a7 0.13
a8 0.14
a9 0.13
a10 0.05
a11 0.11
a12 0.04

Afterwards the parameters have been transcripted in the MATLAB program. In the
following code snippet, other than the initial parameters, some other useful values
have been calculated such as the number of symbols to be transmitted, the number of
samples per symbol, the r and k values which play a crucial role in the code correction
algorithms (see 4,11) and finally the scrambler key (see 13).

1 % Initial constant parameters

2

3 % source number 7

4 alphabet = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

5 probability_vector = [11, 7, 9, 1, 6, 6, 13, 14, 13, 5, 11,

4]/100;

6

7 tau = 60e-9; % symbol duration time, [s]

8 SNR = 8.1; % Signal-to-Noise-Ration, [dB]

9 % Source Code: Shannon-Fano

10 % Error correction code: Cyclic

11 generation_polynomial = [... % z^5 + z^2 + z^0

12 1 0 0 1 0 1];

13 codeword_length = 31; % m

14

15 f0 = 2.5e+9; % carrier frequency [Hz]

16 % Modulation: BPSK

17 phase_shift = pi; % Phase shift [rad]

18 U = 1; % amplitude BPSK signal [V]

19

20 % Additional data

21 transmitted_symbol_number = randi(1e5,1); % number of symbols

22 samples_per_symbol = 500; % samples per symbol

23 r = ceil(log2(codeword_length + 1));% r

24 k = codeword_length - r; % k

25

26 % Used for the scrambling/descrmabling algorithm

27 scrambler_key = randi(2, 1, codeword_length) - 1;
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Part I

Analysis

1 Source data

The source data analysis provides a general overview of how the data are generated
and how this will impact the encoding scheme. Specifically, the source data analysis is
achieved by calculating two important values: the source entropy and the redundancy
coefficient.

Source entropy

The source entropy H and the maximum source entropy Hmax. The entropy of a
sequence of symbols is a number that summarizes the randomness of the selection of
the symbols in the source sequence. The more uncertain the symbols are, the higher
the entropy is and the higher the information the symbols carry. The ideal entropy is
when the source symbols are 1 0 1 0 1 0 ... while the worst entropy is when all
the symbols are 1 or 0. Given a sequence S of N symbols, where each of them has
its probability Pi to occur, the entropy of the sequence is:

H(S) = −
N∑
i=1

Pi log2 Pi

The entropy calculation can be simply achieved with the following MATLAB code.
The only thing to note is that P is the probability vector that assigns to every symbol
of the alphabet its probability.

1 % sum(V .* log2(V))

2 H = - dot(PROBABILITY_VECTOR, log2(PROBABILITY_VECTOR));

Secondly, in order to calculate the maximum entropy Hmax, two conditions have to
be met: all of the symbols have the same probability Pi =

1
N and, of course, they do

not correlate one another. Consequently:

Hmax(S) = −
N∑
i=1

1

N
log2

1

N
=

1

N

N∑
i=1

log2 N = log2 N

Also in this case the MATLAB script to calculate the maximum entropy is trivial.

1 % Number of symbols in the alphabet

2 N = length(PROBABILITY_VECTOR);

3

4 % Maximum source entropy

5 H_max = log2(N);

By running the scripts, the value obtained are H = 3.3995 while Hmax = 3.5850.
Reasonably H < Hmax because the given probabilities in the datasheet weren’t equal
to each other.
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Redundancy coefficient

The redundancy coefficient ρ summarizes in a number how much additional informa-
tion is present inside the sequence. Essentially, the lower the redundancy coefficient
is, the better, because it means that the source entropy is very high. Mathematically,
the coefficient ρ can be obtained as follows:

ρ = 1− H

Hmax
(S)

which translates into the following code snippet:

1 % Calculate the redundancy coefficient ’rho’

2 source_redoundancy = 1 - H/H_max;

Expectedly, the redundancy coefficient is not zero because H < Hmax: by running
the script, ρ = 0.0517.

2 Source encoding

The source coding analysis provides the necessary tools to evaluate the source coding
algorithms for efficient data representation and compression. In this case, the analysis
calculates and uses different values to provide a better understanding of the efficiency
of the Shannon-Fano source coding. Particularly the values that will be analyzed are
the average codeword length m, the probability of 1 and 0 (P1 and P0), the binary
entropy Hbin, the source data generation rate R and the compression ratio K.

Shannon-Fano algorithm

Before calculating the values it is important to encode the symbols of the alphabet
through the Shannon-Fano algorithm. A brief recursive description of it is reported
below.

1. Sort the symbol of the alphabet by descending probability;

2. Divide the sets of symbols into two continuous subsets with the same probability
(or the lowest difference between the two);

3. Assign to one subset the symbol 1 and the other 0;

4. Repeat until every subset consists of one symbol;

5. Read the codeword from left to right.

By applying the Shannon-Fano algorithm to the given source, the result should be
the following.
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S P Shannon-Fano Code m m0 m1

a8 0.14 1 111 3 0 3
a7 0.13

1
0 110 3 1 2

a9 0.13 1 101 3 1 2
a1 0.11

1
1

0 100 3 2 1
a11 0.11 1 011 3 1 2
a3 0.09 1 0101 4 2 2
a2 0.07

1
0

0 0100 4 3 1
a5 0.06 1 0011 4 2 2
a6 0.06

1
0 0010 4 3 1

a10 0.05 1 0001 4 3 1
a12 0.04 1 00001 5 4 1
a4 0.01

0

0
0

0
0 00000 5 5 0

After computing the Shannon-Fano algorithm to the given source, the results should
be inserted into the MATLAB program, as follows.

1 % Probability vector sorted from highest to lowest

2 sorted_prob_vector = sort(probability_vector, ’descend’);

3

4

5 % Values obtained with Shannon-Fano code algorithm

6

7 % Symbols codeword length

8 m = [3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5];

9

10 % Number of 0s inside the symbols codeword

11 m_0 = [0, 1, 1, 2, 1, 2, 3, 2, 3, 3, 4, 5];

12

13 % Number of 1s inside the symbols codeword

14 m_1 = [3, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 0];

Binary entropy

At this point, there is all the needed information to calculate the required data for
the analysis. First of all, to calculate the average codeword length m of N symbols,
the following formula should be computed:

m =

N∑
i=1

mi · Pi

Additionally, to calculate P0 and P1, it is necessary to calculate also the average
number of 0 and 1 symbols. The formula is the same as for the average codeword
length:

m0 =

N∑
i=1

m0i · Pi m1 =

N∑
i=1

m1i · Pi
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After inserting these formulas in the MATLAB script, the values are m = 3.4300,
m0 = 1.6400 and m1 = 1.7900.

1 % Average codeword length

2 m_average = dot(sorted_prob_vector, m);

3

4 % Average number of 0 symbols

5 m_0_average = dot(sorted_prob_vector, m_0);

6

7 % Average number of 1 symbols

8 m_1_average = dot(sorted_prob_vector, m_1);

Moreover, by dividing the number of 0 or 1 symbols by the average length of the
codeword the two probabilities, P0 and P1, can be computed:

P0 =
m0

m
P1 =

m1

m

The two probabilities values are P0 = 0.4781 and P1 = 0.5219. Ideally, the proba-
bilities should be P0 = P1 = 0.5; nonetheless, the two values are still very close to
each other. Finally, with the two probability values the binary entropy Hbin can be
obtained using the following calculation.

Hbin(S) = −P0 log2 P0 − P1 log2 P1

By running the following MATLAB script, the value of the binary entropy is Hbin =
0.9986 which is very close to 1. The higher the entropy is, the more uncertainty is
associated with every symbol: this means that encoding the initial data with the
Shannon-Fano algorithm provides a great value, information-wise.

1 % Probability of 0 symbol

2 P_0 = m_0_average / m_average;

3

4 % Probability of 1 symbol

5 P_1 = m_1_average / m_average;

6

7 % Binary source entropy after coding

8 H_bin = -P_0 * log2(P_0) - P_1 * log2(P_1);

Data rate and compression ratio

After encoding the source data with the Shannon-Fano algorithm, it is important to
evaluate the source data generation rate R, which can be calculated as follows:

R =
H(S)

mτ
, where τ is the symbol duration

The data compression ratio K is important as well: it helps evaluate how much the
initial data has been compressed after the source coding. The following formula will
help to obtain this value.

K =
m

H(S)
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After running the MATLAB script displayed below, the data rate R = 16.519Mbit/s
which should be lower than the channel capacity Cchan with noise. Moreover, the
compression ratio K = 1.0090 which is very close to 1, means that the overall com-
pression is low: this is still not a bad result because the overall entropy is increased
significantly after the source coding.

1 % Calculate Data Rate

2 R = H * (m_average * TAU) ^ (-1);

3

4 % Calculate Compression Ratio

5 K = m_average / H;

3 Shannon’s theorem condition

Shannon’s theorem asserts that for reliable communication two important conditions
should be verified: using a strong error correction code for a specified SNR value and
R ≤ Cchan− ϵ, ϵ → 0 meaning that the source data rate R should be less (or, at most
equal) that the channel capacity Cchan.

It is already possible to compare the data rateR with the noiseless channel capacity
Cbin by computing this formula:

C =
1

τ

Expectedly, the result is Cbin = 16.667 Mbit/s and reasonably meet the Shannon’s
theorem contidion: R = 16.5 Mbps ≤ 16.7 Mbps = Cbin.

Bit Error Rate

Before calculating the channel capacity noise, the error probability Perr, also called
BER (Bit Error Rate), shall be calculated. To do so, by reversing the SNR formula,
the energy per bit to noise power spectral density ratio Eb

N0
needs to be calculated:

SNR = 10 log10(
Eb

N0
) =⇒ Eb

N0
= 10

SNR
10

Which translates in the following MATLAB line:

1 % Energy per bit to noise power spectral density ratio

2 Eb_N0 = 10^(SNR / 10);

To calculate the error probability of the BPSK modulation time, the following formula
should be used:

Perr = 1− Φ

(√
2
Eb

N0

)
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Additionally the Φ function can be created using the erf function in MATLAB as
follows:

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
With this information the MATLAB script can be produced and the BER value can
be calculated: Perr = 1.6315 · 10−4.

1 % define the phi function

2 phi = @(x) 1/2 * ( 1 + erf(x / sqrt(2)) );

3

4 % error probability

5 P_err = 1 - phi( sqrt( 2 * Eb_N0) );

6

7 % no error probability

8 P_err_comp = 1 - P_err;

Channel capacity with noise

All the information needed for the calculation of Cchan is now ready for use. To
calculate the channel capacity with noise the following formula should be utilized:

Cchan =
1

τ
[1 + Perr log2 (Perr) + (1− Perr) log2 (1− Perr)]

The formula translates in the following MATLAB code line:

1 % Channel capacity with noise

2 C_chan = ( 1 + P_err * log2(P_err) + P_err_comp *

log2(P_err_comp) ) * C;

By running the script the result is Cchan = 16.629Mbps ≥ 16.519Mbps = R meaning
that the Shannon’s Theorem condition is fulfilled. Consequently, it is possible to find
a coding approach that will recover the errors that occurred during the transmission.
If the SNR value was, hypothetically, lower, there was a chance that R > Cchan

would’ve translated into the unpossibility of finding an error-correcting code for the
transmission.

4 Error correction

The error correction analysis is important to understand how powerful and yet dan-
gerous the error correction codes are. In this document, the analysis focuses on the
cyclic Hamming code error correction properties even though the conclusions are still
valid for the group Hamming code (both systematic and non-systematic).

Before analyzing the error correction code, it is necessary to properly implement
it. The first thing to do is to generate a binary sequence and the encoding and
decoding matrix. To do so it has been used the cyclgen function which should be
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imported from the communication package as follows: import communications.*.
These steps are summarized in the code snipped below.

1 % generate a sequence of k binary symbols

2 binary_sequence = randi(2, 1, k) - 1;

3

4 % generate decoding and encoding matrix

5 [cyclic_decoding_matrix, cyclic_encoding_matrix] =

cyclgen(codeword_length, generation_polynomial);

6

7 % reorder the matrixes

8 % [6 -> 31, 1 ->]

9 reorder = [6:codeword_length, 1:5];

10

11 cyclic_encoding_matrix = cyclic_encoding_matrix (:, reorder);

12

13 cyclic_decoding_matrix = (cyclic_decoding_matrix (:,

reorder))’;

One crucial thing to do is to redefine the associations between the syndrome values
and the error position. The vector that is shown below is not random at all but it
has been calculated using the algorithm shown in the chapter 11 and the copy-pasted
it. This vector is very important because if it is not defined the correction algorithm
won’t work at all but will increase the error rate.

1 % Associates the syndrome to the bit.

2 % This vector has been calculated in the hamming_decoding function

and copy-pasted here.

3 associations = [0 31 30 13 29 26 12 20 28 2 25 4 11 23 19 8 27

21 1 14 24 9 3 5 10 6 22 15 18 17 7 16];

After setting up the error correction algorithm, it is possible to begin the analysis
by encoding the codeword and studying the behavior of the cyclic Hamming code.
Reasonably, by introducing no errors the decoded codeword is the same as the initial
codeword.

1 % encode the codeword

2 codeword = mod(binary_sequence * cyclic_encoding_matrix, 2);

3 initial_codeword = codeword;

4

5 % decode without errors

6 syndrome_no_error = mod(codeword * cyclic_decoding_matrix, 2);

For the next analysis, to properly understand the functioning of the error correc-
tion cyclic code, it will be used the following 26-symbols randomly-generated binary
sequence:

1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0

The above sequence, after the cyclic hamming encoding will have 31 symbols as
follows:

1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0

14



One error

By introducing one error to a random position it is necessary to calculate the decimal
syndrome value and then use the associations vector to detect and correct the
error. The code snippet presented below sums up the error correction after one error
is displayed below.

1 % introduce one error

2 error_position = randi(31, 1);

3 codeword(error_position) =~ codeword(error_position);

4

5 codeword_one_error = codeword;

6

7 % get the error syndrome

8 syndrome_one_error = mod(codeword_one_error *

cyclic_decoding_matrix, 2);

9

10 % convert the syndrome into decimal

11 syndrome_one_error_decimal =

bin2dec(num2str(syndrome_one_error));

12

13 % get the index of the wrong symbol

14 wrong_symbol_position =

associations(syndrome_one_error_decimal + 1);

15

16 % correct the error

17 codeword_one_error(wrong_symbol_position) =

~codeword_one_error(wrong_symbol_position);

By introducing one error in a random position, like position 30, the wrong sequence
would be the following:

1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0

Nonetheless the code manages to spot the error using the syndrome value:

0 0 0 1 0

It must be highlighted again the importance of the associations vector because the
decimal value of the syndrome is not 30 but it is 2. The vector bonds the decimal
value 2 to the position error 30 successfully managing to perform the error correction:

1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0

Two errors

By using the below-displayed code, very similar to the previous one, it is possible to
introduce a second error to the codeword to analyze the effect of two errors in the
codeword.

1 % introduce second error

2 error_position = randi(31, 1);
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3 codeword(error_position) =~ codeword(error_position);

4

5 codeword_two_errors = codeword;

6

7 % get the error syndrome

8 syndrome_two_errors = mod(codeword_two_errors *

cyclic_decoding_matrix, 2);

9

10 % convert the syndrome into decimal

11 syndrome_two_errors_decimal =

bin2dec(num2str(syndrome_two_errors));

12

13 % get the index of the wrong symbol

14 wrong_symbol_position =

associations(syndrome_two_errors_decimal + 1);

15

16 % correct the error

17 codeword_two_errors(wrong_symbol_position) =

~codeword_two_errors(wrong_symbol_position);

By running the code and generating a second error position, like position 11, the
codeword becomes the following:

1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0

Unfortunately in this case the syndrome value will not be helpful:

0 1 1 1 0

which its decimal value is 14, meaning that, using the associations vector, the error
position is 19 not corresponding in either the two errors but creating a third error:

1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0

For this reason it is important to analyze the probability of two errors occurring in
the codeword (see 7): because with the error correction code the two errors not only
not be correct but also a third error will be generated in the attempt.

Three erros particoular situation

If three errors occur in specific positions the algorithm may not even detect the errors
because the syndrome is zero. This happens when the three error syndromes cancel
each other out. In this case, if the errors are at positions 30 and 11, the critical error
position is 14. In this situation, the error syndrome is 0, preventing the algorithm
from detecting and correcting any of the three errors. The following code calculates
the critical position for any two random error positions using a simple brute force

algorithm:

1 % Three errors experiment

2 codeword = initial_codeword;

3
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4 % introduce error

5 error_position = randi(31, 1)

6 codeword(error_position) = ~codeword(error_position);

7

8 % introduce error

9 error_position = randi(31, 1)

10 codeword(error_position) = ~codeword(error_position);

11

12 critical_position = -1;

13

14 for i = 1 : 31

15 % introduce error

16 codeword(i) = ~codeword(i);

17

18 % memorize the codeword

19 codeword_three_errors = codeword;

20

21 % get the error syndrome

22 syndrome_three_errors = mod(codeword_three_errors *

cyclic_decoding_matrix, 2);

23

24 % convert the syndrome into decimal

25 syndrome_three_errors_decimal =

bin2dec(num2str(syndrome_three_errors));

26

27 % get the index of the wrong symbol

28 wrong_symbol_position =

associations(syndrome_three_errors_decimal + 1);

29

30 if ~wrong_symbol_position

31 critical_position = i;

32 end

33 end

5 Bit Error Rate plot

Another type of analysis that is important to make for the Hamming Code is its
overall advantages during the transmission. Particularly, it is important to make
a comparison between an encoded transmission (with error correction) and a not
encoded transmission. To do so it is important to plot an important graph describing
the relationship between the BER in relationship with the SNR value.

To plot such a graph it is necessary to evaluate the Bit Error Rate of the trans-
mission of a random binary sequence with the given modulation (BPSK) for different
Signal-to-Noise Ratio. The first thing to do is generate the random sequence and
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generate the BPSK carrier signal using the given initial parameters:

1 % Initialize SNR vector

2 SNR_vector = 0 : 1/2 : 15;

3

4 % Generation of binary sequence

5 N = 1e4; % number of bits to be sent

6 N = floor(N / k) * k; % match information block size

7 binary_sequence = randi(2, 1, N) - 1;

8

9 % Generate carrier signal

10

11 % Define the time-step

12 delta_t = tau / samples_per_symbol;

13

14 % Time intervals for one symbol

15 time_intervals = 0: delta_t: tau - delta_t;

16

17 % Create the carrier signal

18 carrier_signal = sin(2 * pi * f0 * time_intervals); % Carrier

signal

19

20 % Calculate the energy per symbol

21 Eb = dot(carrier_signal, carrier_signal);

After creating the carrier signal it is necessary to encode and modulate the randomly
generated sequence. To perform the Hamming encoding algorithm it is necessary to
create a matrix that will be used in the algorithm. The functioning of the encoding is
carefully explained in chapter 11. After Hamming-encoding the sequence the BPSK
modulation is performed by transforming the sequence into a Non-Return-to-Zero
signal and performing the Kronecke multiplication with the carrier signal.

1 % Hamming encoding

2 hamming_encoded_sequence = hamming_encoding(binary_sequence,

codeword_length, k, generation_polynomial);

3

4 % Update the number of bits

5 M = N;

6 N = length(hamming_encoded_sequence);

7

8 % Modulate the sequence with BPSK

9 BPSK_signal = kron(-2 * hamming_encoded_sequence + 1,

carrier_signal);

Before calculating the different BER values it is necessary to generate the noise power
and standard deviation as follows:

1 % Generate noise power

2

3 % Reversed SNR formula

4 EbN0 = 10.^(SNR_vector / 10);
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5

6 % Obtain noise spectral power density

7 N0 = Eb./EbN0;

8

9 % Calculate sigma for BPSK

10 sigma = sqrt(N0 / 2);

11

12

13 % Prepare the vectors for the for-loop

14 BER_no_hamming = 1 : length(SNR_vector);

15 BER_with_hamming = 1 : length(SNR_vector);

The crucial section of the analysis is presented in the following for loop. First of all
the Gaussian White Noise is generated for every entry of the SNR vector variable and
then added to the BPSK modulated signal. At this point, the detection is performed
using the optimal correlation receiver and the BPSK threshold which is zero. Before
performing the error correction, the detected sequence is compared with the initial
sequence to keep calculating the Bit Error Rate without performing the decoding
(BER no hamming). Secondly, the error correction is performed using the detection
algorithm, thoughtfully explained in chapter 11, and then the second BER value is
computed (BER with hamming).

1 for i = 1 : length(SNR_vector)

2 % Calculate the GWN for a specific SNR value

3 noise = sigma(i) * randn(1, N * samples_per_symbol);

4

5 % Add the noise

6 signal_with_noise = BPSK_signal + noise; % add noise in

transmitted channel;

7

8

9 % Use CORRELATION RECEIVER to detect symbols

10

11 % Slice recieved signal into segments in each column

12 sliced_signal_with_noise = reshape(signal_with_noise,

samples_per_symbol, N);

13

14 % Detect the signal with the BPSK threshold

15 detected_signal = carrier_signal * sliced_signal_with_noise

< 0;

16

17

18 errors_number_no_hamming = sum(detected_signal ~=

hamming_encoded_sequence);

19

20 % Calculate BER value

21 BER_no_hamming(i) = errors_number_no_hamming / N;

22

23 % Hamming decoding

24 decoded_data_sequence = hamming_decoding(detected_signal,
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codeword_length, k, generation_polynomial);

25

26 % Check number of erros

27 errors_number_with_hamming = sum (decoded_data_sequence ~=

binary_sequence);

28

29 % Calculate BER value

30 BER_with_hamming(i) = errors_number_with_hamming/M;

31 end

All the information to plot the BER curve is known. The following script will provide
the plots needed to properly analyze the impact of the cyclic Hamming coding during
the noisy transmission. Noticeably, the BER graphics are not linear but should be
plotted with the logarithmic scale.

1 % creates figure and settings

2 f = figure(1);

3 f.Name = ’Analysis of BER curve’;

4 f.NumberTitle = ’off’;

5 f.Position = [450, 100, 700, 600];

6

7 % Draw plot without Hamming code

8 semilogy(SNR_vector, BER_no_hamming, ’b’), grid on;

9

10 % Draw plot with Hamming code

11 hold on, semilogy(SNR_vector, BER_with_hamming, ’r’), hold off;

12

13 % Draw theoretical plot

14 hold on, semilogy(SNR_vector, error_propability, ’m’), hold

off;

15

16 % Draw SNR project value

17 hold on, plot([SNR SNR], [1e-4, 1e-1], ’g--’), hold off;

18

19

20 xlabel(’Signal-to-Noise Ratio, [dB]’), ylabel(’Bit Error

Rate’); % lables

21 ylim([1e-4, 1e-1]), xlim([0, 10]); % limits

22 legend(’Uncoded’, ’Coded’, ’Theoretical’, ’Given SNR value’); %

legend

By running the MATLAB script the plot obtained is displayed in figure 2. As expected
the red plot decreases faster than the blue plot. This is a reasonable and expected
result because the error correction code decreases the error rate by correcting the
errors occurring during the transmission. Additionally, the given SNR value is plotted
with a dotted green line: the red and the green curves do not meet meaning that
the given SNR value, the given modulation technique and the given channel coding
algorithm are acceptable and valid to successfully perform a digital transmission.

One important thing to notice in figure 2 is the beginning of the three plots: the red
one is above the blue one meaning that with a low SNR value (meaning that the power
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Figure 2: BER vs SNR plot of a randomly generated sequence.

of the signal is almost the same as the noise) the error rate of the coded source is higher
compared to the uncoded one. This is because when there are 2 or more errors in the
codeword the Hamming code is not able to perform the error correction (as explained
in the chapter 4) and creates an additional error in the codeword, consequently raising
the error probability (or the BER).

6 Modulated signal spectrum

The spectrum analysis is helpful for a better understanding of the behavior of the
BPSK modulation technique. Analyzing the spectrum provides insights into the dis-
tribution of signal power across different frequencies. In this section, there will be the
analysis an the plots of a periodic 1010 sequence and a randomly generated sequence.
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Periodic 1010 sequence signal

To analyze and plot the spectrum of a periodic 1010 sequence signal some important
values should be calculated. The ω0 value, which is the angular carrier frequency, the
value, representing the base harmonic frequency and k, which is the range in which
the spectrum will be calculated. The first two values may be calculated with the
following expression:

ω0 = 2πf0 Ω =
π

τ

The k range is a range of n indexes around the carrier frequency central index, k0 =
ω0/Ω. These values can be easily obtained by running the below-displayed code
snippet.

1 % anguolar carrier frequency

2 omega_0 = 2 * pi * f0;

3

4 % base harmonic angoular frequency

5 OMEGA = pi / tau;

6

7 % Carrier frequency central index

8 k_0 = omega_0 / OMEGA;

9

10 % Define range of indexes for spectrum

11 K = k_0 + (-10 : 10);

At this point, the BPSK spectrum can be calculated. To do so it is necessary to calcu-
late the Fourier series coefficient for the BASK1 modulation type using the following
equation:

CBASK(k) = j
U

4

sin
[
(kΩ− ω0)

τ
2

]
(kΩ− ω0)

τ
2

Now that the BASK coefficients are calculated, the BPSK coefficients are easy to be
computed:

CBPSK(k) = CBASK(k)
[
e+jkΩ τ

2 − e−jkΩ τ
2

]
These two complex equations can be computed in MATLAB with the help of the sinc
function as follows:

1 % Phase value of the spectral function

2 phase = (K * OMEGA - omega_0) * tau / 2;

3

4 C_BASK = sinc(phase / pi) * U / 4 * 1j; % fourirer series

coefficient, BASK

5

6 % BPSK spectrum for periodocal ’1’ and ’0’ sequence (...1 0 1 0 1 0 1

0 1 0...)

7 C_BPSK = C_BASK .* ( exp(1j * K * OMEGA * tau / 2) - exp(- 1j

* K * OMEGA * tau / 2));

1Which stands for Binary Amplitude Shift Keying
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After numerically calculating the spectrum, it is very important to plot the result by
running the following code snippet.

1 % creates figure and settings

2 f = figure(2);

3 f.Name = ’Analysis of BPSK spectrum’;

4 f.NumberTitle = ’off’;

5 f.Position = [200, 120, 1200, 600];

6

7 % plot 1st result

8 stem( K * OMEGA / (2 * pi), abs(C_BPSK), ’b’ ), grid on,

9 xlabel(’Frequency [GHz]’), ylabel(’Amplitude, [V]’),

title(’Amplitude Spectrum of periodic signal’)

10 ylim([-0.05, 0.35]);

By observing the plot displayed in figure 3 it is noticeable that the carrier component
in the center of the plot is zero: this is the quirk of the BPSK modulation. Sure
enough, the two BASK components subtract at the center of the spectrum but add
up in the other cases due to the opposite phase of the formula.

Figure 3: BPSK periodic signal spectrum.

Random sequence signal

After plotting and analyzing the spectrum in the case of a periodic signal, it would
be important to analyze the spectrum of a random signal as well. To do so it is
necessary to get the power spectral density of the BPSK signal, which is double the
power spectral density of the BASK modulation:

GBASK(ω) = 2τ |CBASK(ω)|2

Consequently the power spectral density of the BPSK signal, called GBPSK , can be
computed using the following MATLAB script.
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1 % Power Spectral Density (PSD) for random input signal

2 omega = ( K(1) : 1/100 : K(end) ) * OMEGA; % angoular frequency

3

4 phase = (omega - omega_0 ) * tau / 2; % continuous phase

5 S_BASK = 2 * tau * sinc(phase / pi ) * U / 4 * 1j;

6

7 % PSD as a normalized squarred spectral function

8 G_BPSK = 1/ tau * abs(S_BASK) .^2;

Eventually, as for the spectrum of a periodic signal, the graph can be plotted and
generated using the following script.

1 % creates figure and settings

2 f = figure(3);

3 f.Name = ’Analysis of BPSK spectrum’;

4 f.NumberTitle = ’off’;

5 f.Position = [200, 120, 1200, 600];

6

7 % plot 2nd result

8 plot( omega / (2 * pi), G_BPSK, ’b’ ), grid on,

9 xlabel(’Frequency [GHz]’), ylabel(’PSD’), title(’PSD of random

signal’)

10 ylim([-0.1e-8, 1.6e-8]);

The result is that the spectrum of the BPSK signal is extremely high if compared with
the BASK and BFSK spectrum due to its particular properties (figure 4): the phase
shift of π doubles the PSD in comparison with the BASK and the BFSK making this
modulation technique the most efficient one out of the three.

Figure 4: BPSK random signal spectrum.
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7 Uncorractable errors

The reason for calculating the probability of 2 or more errors occurring in the same
codeword has been explained in the previous chapters. The main reason is that the
Hamming code is not able to correct 2 or more errors in the codeword: this does
not mean that at least one of them is correct but it leads to the creation of another
error. Consequently, the probability of an uncorrectable error is strictly bonded to
the fact that with that type of error a new error will be almost surely generated by
the Hamming code. For this reason, this probability should be as near to zero as
possible.

To calculate such a value the mathematical equation below-displayed should be
computed:

P≥2 err = 1− (1− Perr)
m −

g∑
i=1

Ci
m P i

err(1− Perr)
m−i

In this particular case, g = 1 and Ci
m = m so the equation can be simplified as follows:

P≥2 err = 1− (1− Perr)
m −mP i

err(1− Perr)
m−1

Which translates in the following MATLAB line:

1 % probability of the case when it is not possible to correct errors

with the Hamming code (>= 2 errors)

2 P_uncor = 1 - (P_err_comp)^(codeword_length) - codeword_length

* P_err * (P_err_comp)^(codeword_length - 1);

After running the script the probability of an uncorrectable error P≥2 err = 1.2338 ·
10−5, which is a low value but, with a high mole of transmitted data there is the
possibility to still occur in uncorrectable errors that may lead to an unsuccessful
transmission. The probability is still rather low but it is a still possible scenario that
should be taken into consideration.

Raw results

In this section, the project’s numerical results will be displayed with the purpose of
having a direct and straightforward summary of the course project outcomes.

Symbol Description Value

Task 2

H(S) Source entropy 3.3995

H(S)max Maximum source entropy 3.5850

Conitnue on next page . . .
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. . . continued from previous page

Symbol Description Value

ρ Source redundancy 0.0517

Task 3

m Average codeword length 3.4300

P0 Probability of "0" 0.4781

P1 Probability of "1" 0.5219

Hbin(S) Binary entropy 0.9986

R Source data rate 16.519 Mbps

K Compression ratio 1.0090

Task 4

Cbin Noiseless channel capacity 16.667 Mbps

Perr Error probability (BER) 1.6315 · 10−4

Cchan Channel capacity with noise 16.629 Mbps

Task 8

P≥2 err Probability of ≥ 2 errors occurring 1.2338 · 10−5
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Part II

Simulation

8 Data generation algorithm

To simulate the transmission using the given initial parameters it is crucial to gen-
erate the symbols following the probabilities specified in the Source 7 data sheet.
To achieve such generation specifics a generation algorithm shall be implemented in
MATLAB. The following MATLAB functions will generate a sequence of n symbols
in the alphabet following their probability distribution.

Comulative distribution probabilities calculator

The first function — distribution probability matrix — will take as input the
symbol matrix whose first row contains the symbols in the alphabet and the second
row contains their respective probabilities. The function will return a matrix whose
first row is the same but the second row contains cumulative distribution meaning
that the second probability value is added to the first, the third is added to the second
and so on. Consequently, the last probability value will be one.

1 function result = distribution_probability_matrix(symbol_matrix)

2 % Extract probability vector from the symbol matrix

3 probability_vector = symbol_matrix(2, :);

4

5 % Get the number of possible symbols

6 alphabet_length = length(probability_vector);

7

8 % Calculate the cumulative probability matrix

9 cumulative_probability = 0;

10 sum_probability_vector = zeros(1, alphabet_length);

11 for i = 1:alphabet_length

12 % Calculate cumulative probability

13 cumulative_probability = cumulative_probability +

probability_vector(i);

14

15 % Store cumulative probability in the vector

16 sum_probability_vector(i) = cumulative_probability;

17 end

18

19 % Combine symbols and cumulative probabilities into the result matrix

20 result = [symbol_matrix(1, :); sum_probability_vector];

21 end

This helper function will be useful when a random number r between 0 and 1 is
generated: the symbol associated with r will be the i-th symbol where Pi−1 < r ≤ Pi.
In such a way the symbols will have the same probability to be associated with the
number r as specified in the datasheet.
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Sequence generator

The distribution probability matrix function will be used in the actual gener-
ation function called symbol sequence generator which generates n symbols con-
forming with their specified probabilities. The below-displayed function will generate
a random number r between 0 and 1 and associate it with the i-th symbol whose prob-
ability is Pi−1 < r ≤ Pi. This is achieved by subtracting the random number from
the cumulative probability vector and choosing the symbol with the lowest positive
probability value. This procedure is computed n time: every temporal association is
added to the final result which will be the generated symbol sequence.

1 function result = symbol_sequence_generator(symbol_matrix, n)

2 % Initialize an empty vector for the symbol sequence with length n

3 result = zeros(1, n);

4

5 % Calculate the cumulative probability matrix using the provided

function

6 sum_probability_matrix =

distribution_probability_matrix(symbol_matrix);

7

8 % Generate the symbol sequence

9 for i = 1:n

10 % Generate a random number between 0.00 and 1.00

11 random_number = round(rand(), 2);

12

13 % Calculate the distance of each cumulative probability from the

random number

14 distance_from_random_number = sum_probability_matrix(2, :)

- random_number;

15 distance_from_random_number(distance_from_random_number <

0) = +Inf;

16

17 % Get the index of the symbol with the minimum distance

18 [~, symbol] = min(distance_from_random_number);

19

20 % Assign the selected symbol to the result vector

21 result(i) = symbol;

22 end

23 end

9 Source coding and decoding

The second step is to implement an algorithm that will encode and decode the newly
generated symbols using the Shannon-Fano algorithm. The two algorithms are based
on the results obtained and displayed in the Code column of the table in the ”Source
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encoding” section.

Shannon-Fano encoding

The Shannon-Fano encoding can be achieved by using a very simple switch. Sure
enough, the helper function encode symbol displayed below associates with every
symbol in the alphabet and its respective codeword.

1 function result = encode_symbol(symbol)

2 % Use a switch statement to assign the encoded representation based

on the input symbol

3 switch symbol

4 case 1

5 result = [ 1 0 0 ];

6 case 2

7 result = [ 0 1 0 0 ];

8 case 3

9 result = [ 0 1 0 1 ];

10 case 4

11 result = [ 0 0 0 0 0 ];

12 case 5

13 result = [ 0 0 1 1 ];

14 case 6

15 result = [ 0 0 1 0 ];

16 case 7

17 result = [ 1 1 0 ];

18 case 8

19 result = [ 1 1 1 ];

20 case 9

21 result = [ 1 0 1 ];

22 case 10

23 result = [ 0 0 0 1 ];

24 case 11

25 result = [ 0 1 1 ];

26 case 12

27 result = [ 0 0 0 0 1 ];

28 end

29 end

The shannon fano encoding function takes the symbol sequence as input and en-
codes it symbol-by-symbol using the aforementioned encode symbol function.

1 function encoded_sequence = shannon_fano_encoding(symbol_sequence)

2 encoded_sequence = [];

3

4 % Iterate through the symbol sequence and encode each symbol

5 for i = 1:length(symbol_sequence)

6 encoded_sequence = [encoded_sequence,

encode_symbol(symbol_sequence(i))];

7 end

8 end
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Shannon-Fano decoding

The decoding algorithm performs the exact reverse operation of the encoding algo-
rithm. Sure enough, there is the decode symbol function which translates the binary
sequence into its respective symbol.

1 function symbol = decode_symbol(code)

2 % Use a switch statement to check each possible code and return the

corresponding symbol

3 switch code

4 case ’[1 0 0]’

5 symbol = 1;

6 case ’[0 1 0 0]’

7 symbol = 2;

8 case ’[0 1 0 1]’

9 symbol = 3;

10 case ’[0 0 0 0 0]’

11 symbol = 4;

12 case ’[0 0 1 1]’

13 symbol = 5;

14 case ’[0 0 1 0]’

15 symbol = 6;

16 case ’[1 1 0]’

17 symbol = 7;

18 case ’[1 1 1]’

19 symbol = 8;

20 case ’[1 0 1]’

21 symbol = 9;

22 case ’[0 0 0 1]’

23 symbol = 10;

24 case ’[0 1 1]’

25 symbol = 11;

26 case ’[0 0 0 0 1]’

27 symbol = 12;

28 otherwise

29 symbol = []; % Return empty if the code does not match any

known code

30 end

31 end

This function is used in the shannon fano decoding function wich performs the de-
coding of the input encoded sequence. The body of the function is a little more
complicated than the encoding function because the length of the encoded symbol is
not fixed — it can be 3, 4 or 5 — and, as such, every time a new symbol is read from
the decoded data, a check should be done to understand if the symbol can be decoded
or not.

1 function decoded_sequence = shannon_fano_decoding(encoded_sequence)

2 decoded_sequence = [];

3

4 % Iterate through the encoded sequence and decode each symbol
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5 current_code = [];

6 for i = 1:length(encoded_sequence)

7 current_code = [current_code, encoded_sequence(i)];

8

9 % Check if the current code matches any known code

10 symbol = decode_symbol(string(mat2str(current_code)));

11

12 % If a symbol is found, add it to the decoded sequence and reset

the current code

13 if ~isempty(symbol)

14 decoded_sequence = [decoded_sequence, symbol];

15 current_code = [];

16 end

17 end

18 end

10 Padding bits

One important thing to notice is that the cyclic Hamming encoding is that the algo-
rithm requires an input matrix whose number of elements is a divisor of the informa-
tion symbols k. The problem is that it is not granted that the generated and encoded
sequence is a perfect divisor of k, so it is crucial to add some padding bits to round
the length of the sequence to the closest bigger multiplier of k. The idea behind this
process is to count how many padding bits are needed to round the length of the
sequence and store the value into a r-bit sequence containing the binary number of
bits to remove during the reception phase.

Add padding bits

To add the padding bits, the first thing to know is how many padding bits are needed
to round the length of the sequence. The purpose of the following helper function
is to calculate the number of bits to add. The information needed to calculate this
value is input parameters that are calculated at the very beginning of the script (see ).
In fact, with a codeword length of 31, the number of bits to manage this number is
r = 5, meaning that the usable information bits are k = 26.

1 function number_of_padding_bits =

count_padding_bits(compact_sequence, k, r)

2 % Calculate the number of padding bits required

3 number_of_padding_bits = k - rem(length(compact_sequence), k);

4

5 % Adjust the number of padding bits if it is less than the

storage_bits

6 if number_of_padding_bits < r

7 number_of_padding_bits = number_of_padding_bits + k;
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8 end

9 end

After obtaining the number of bits to add, the only thing to do is to fill the sequence
and at the end incorporate the binary sequence containing the number of added bits
as it is shown in the add padding bits function below.

1 function padded_sequence = add_padding_bits(compact_sequence, k, r)

2 % Determine the number of bits needed for padding

3 bits_to_pad = count_padding_bits(compact_sequence, k, r);

4

5 % Convert the number of bits to pad to binary representation

6 binary_padding_value = str2num(dec2bin(bits_to_pad, r)’)’;

7

8 % Add padding bits to the end of the sequence

9 padded_sequence = [compact_sequence, zeros(1, bits_to_pad -

r), binary_padding_value];

10 end

Remove padding bits

On the other hand during the reception, the only thing to do is to get the last r
symbols of the sequence and convert them into a decimal number, as shown in the
get padding bits function below.

1 function padding_bits = get_padding_bits(padded_sequence, r)

2 % Extract the last r bits from the padded sequence

3 bits = padded_sequence(end - r + 1 : end);

4

5 % Convert the binary representation of the bits to a string

6 str = ’’;

7 for i = 1 : length(bits)

8 str = append(str, num2str(bits(i)));

9 end

10

11 % Convert the binary string to decimal to obtain the number of

padding bits

12 padding_bits = bin2dec(str);

13 end

After getting the number n of padding bits added, the last step is to remove the last
n symbols of the sequence to get the original data.

1 function compact_sequence = remove_padding_bits(padded_sequence, r)

2 % Call the get_padding_bits function to determine the number of

padding bits

3 padding = get_padding_bits(padded_sequence, r);

4

5 % Remove the padding bits from the end of the sequence

6 compact_sequence = padded_sequence(1 : end - padding);

7 end
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11 Channel coding and decoding

The Hamming encoding and decoding is the most crucial part of the transmission
because it is the one responsible for the error correction of the transmission. There
are two types of hamming encoding, group coding and cyclic coding: in this case,
cyclic coding has been utilized to perform the error correction. It is important to
note that the channel coding adds some bits to the codeword: precisely during the
encoding phase to the codeword are added 5 symbols, making the sequence length
a perfect divisor of 26 + 5 = 31, meanwhile after the decoding the five symbols at
the end of the codeword are removed making it again a perfect divisor of 26. It is
important to highlight that the Hamming coding (both the group and cyclic) is able to
correct only one error per codeword. If there is more than one error, the code will not
only not correct the error but will create other errors by attempting the correction,
as already explained in section 4. This is one of the reasons the interleaving process
is needed.

Cyclic Hamming encoding

To perform the Hamming encoding to the sequence it is necessary to generate the
encoding matrix using the cyclgen function2 that uses the codeword length and the
generation polynomial defined at the beginning of the code. The hamming encoding

function, uses the generated encoding matrix to perform a matrix multiplication and
encode the codeword. Noticeably, the function needs as input and returns as output
a sequence even though inside it the sequence is transformed into a matrix and then
converted into a vector.

1 function encoded_data = hamming_encoding(binary_data,

codeword_length, k, generation_polynomial)

2 % Reshape the input binary data into a matrix with k columns

3 binary_data_matrix = reshape(binary_data, k,

length(binary_data) / k)’;

4

5 % Number of redundancy symbols (parity bits)

6 r = codeword_length - k;

7

8 % Generate the cyclic encoding matrix based on the generator

polynomial

9 [~, cyclic_encoding_matrix] = cyclgen(codeword_length,

generation_polynomial);

10

11 % Reorder the encoding matrix to match Hamming code requirements

12 reorder = [r + 1 : codeword_length, 1 : r];

13 cyclic_encoding_matrix = cyclic_encoding_matrix(:, reorder);

14

15 % Calculate control symbol values using matrix multiplication

16 % Perform modulo 2 operation to ensure binary result

17 encoded_data_matrix = rem(binary_data_matrix *

cyclic_encoding_matrix, 2)’;

2Note that the function needs to be imported: import communications.*.
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18

19 % Reshape the encoded data matrix into a vector and output

20 encoded_data = encoded_data_matrix(:)’;

21 end

Cyclic Hamming decoding

The decoding algorithm is slightly more complicated due to its error-correction prop-
erties. The below-displayed hamming decoding function has the purpose of analyzing
the encoded data and, by calculating the syndrome value, performing the error cor-
rection. After the decoding, the codeword length won’t be 31 anymore but will return
to 26.

1 function decoded_data = hamming_decoding(encoded_data,

codeword_length, k, generation_polynomial)

2 % Reshape the encoded data into a matrix where each row is a codeword

3 encoded_data_matrix = reshape(encoded_data, codeword_length,

length(encoded_data) / codeword_length)’;

4

5 % Calculate the number of control symbols (parity bits)

6 r = codeword_length - k;

7

8 % Generate the syndrome calculation matrix

9 [~, cyclic_encoding_matrix] = cyclgen(codeword_length,

generation_polynomial);

10 syndrome_matrix = cyclic_encoding_matrix(:, (1:r));

11 syndrome_matrix = [syndrome_matrix; eye(r)];

12

13 % Calculate the syndrome for each codeword

14 syndrome_value = rem(encoded_data_matrix * syndrome_matrix, 2);

15 syndrome_value = syndrome_value * 2.^(r - 1 : -1 : 0)’;

16

17 % Get the associations vector (syndrome values to error positions

mapping)

18 associations = get_associations(syndrome_matrix,

codeword_length);

19

20 % Map the syndrome value to error position

21 correction_index = [0, associations(:, 1)’];

22 error_indexes = correction_index(syndrome_value + 1);

23

24 % Define the error vector table

25 error_vector = [zeros(1, codeword_length);

26 eye(codeword_length)];

27

28 % Correct the errors in the received codewords

29 codeword = rem(encoded_data_matrix +

error_vector(error_indexes + 1, :), 2);

30

34



31 % Extract the information symbols from the corrected codewords

32 decoded_data_matrix = codeword(:, 1:k)’;

33

34 % Reshape the decoded data matrix back to a vector

35 decoded_data = decoded_data_matrix(:)’;

36 end

Noticeably, a crucial part of the cyclic error correction algorithm is the calculation of
the associations. In the cyclic coding, the syndrome value and the error position
are not linearly associated. For example, the syndrome value 0 0 0 0 12 = 1 does
not mean that the error is at index 1, but it is in position 31 instead and the syndrome
1 1 1 1 12 = 31 is not associated with the position 31 but with the index 16. The
association between the syndrome value and the error position is deterministic and
the get associations function helps to associate the error-index and the syndome
decimal value. We can observe that the vector is persistent, meaning that it needs
to be calculated only one time, helping the script to be more efficient.

1 function associations = get_associations(syndrome_matrix,

codeword_length)

2 % Persistent variable to store the associations across function calls

3 persistent cached_associations;

4

5 % Check if associations are already calculated

6 if isempty(cached_associations)

7 % Initialize positions and syndrome decimal value vector

8 positions = (1 : codeword_length)’;

9 syndrome_decimal_value_vector = [];

10

11 % Calculate syndrome decimal values for each position

12 for i = 1 : codeword_length

13 syndrome_decimal_value_vector =

[syndrome_decimal_value_vector;

bin2dec(num2str(syndrome_matrix(i, :)))];

14 end

15

16 % Create the associations matrix and sort by syndrome value

17 cached_associations = [positions,

syndrome_decimal_value_vector];

18 cached_associations = sortrows(cached_associations, 2);

19 end

20

21 % Return the cached associations

22 associations = cached_associations;

23 end
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12 Interleaving and deinterleaving

The interleaving and deinterleaving process is needed to prevent group errors, also
called burst errors. This is achieved by deterministically mixing the sequence before
the transmission and recomposing it by performing the initial algorithm in reverse. In
such a way, if during the communication a burst error happens when the sequence is
restored in the initial order, the possibility of having these types of errors drastically
decreases. Noticeably this algorithm can be performed multiple times in the same
sequence to minimize the probability of burst errors.

Interleaving

The interleaving function uses a matrix transpose algorithm to mix the sequence.
Noticeably the unmixed sequence is compressed into the interleaver matrix: the
first 31 symbols of the sequence are inserted into the first column, the second 31
symbols are inserted into the second column and so on. After filling the matrix, to
create the interleaved sequence it is necessary to read the matrix through the rows:
this is the purpose of the second for loop.

1 function mixed_sequence = interleaving(unmixed_sequence,

column_length)

2 % Calculate the number of length of each row (also the number of

columns) based on the input sequence length

3 row_length = length(unmixed_sequence) / column_length;

4

5 % Write on the columns and read on the rows to create the interleaved

matrix

6 interleaver_matrix = [];

7

8 % Iterate through the rows

9 for i = 1 : row_length

10 % Extract the current column from the unmixed sequence

11 current_column = unmixed_sequence(column_length * (i-1) + 1

: column_length * i)’;

12

13 % Append the current column to the matrix

14 interleaver_matrix = [interleaver_matrix, current_column];

15 end

16

17 % Initialize the interleaved sequence

18 mixed_sequence = [];

19

20 % Iterate through the columns of the matrix

21 for i = 1 : column_length

22 % Append the elements from each row of the current column to the

interleaved sequence

23 mixed_sequence = [mixed_sequence, interleaver_matrix(i, 1 :

end)];

24 end

25
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26 end

Deinterleaving

The deinterleaving function is the exact opposite of the interleaving function. In
this case, the sequence is inserted into the rows of the deinterleaver matrix and
then read through the column. Reasonably the body of the function is very similar
to its reverse function.

1 function unmixed_sequence = deinterleaving(mixed_sequence,

column_length)

2 % Calculate the number of columns (also the number of rows) based on

the input sequence length

3 row_length = length(mixed_sequence) / column_length;

4

5 % Initialize the matrix for deinterleaving

6 deinterleaver_matrix = [];

7

8 % Iterate through the columns of the interleaved sequence

9 for i = 1 : column_length

10 % Extract the current column from the mixed sequence

11 current_column = mixed_sequence(row_length * (i-1) + 1 :

row_length * i)’;

12

13 % Append the current column to the matrix

14 deinterleaver_matrix = [deinterleaver_matrix,

current_column];

15 end

16

17 % Initialize the deinterleaved sequence

18 unmixed_sequence = [];

19

20 % Iterate through the rows of the matrix

21 for i = 1 : row_length

22 % Append the elements from each column of the current row to the

deinterleaved sequence

23 unmixed_sequence = [unmixed_sequence,

deinterleaver_matrix(i, 1 : end)];

24 end

25

26 end

37



13 Scrambling and descrambling

The scrambling process helps with the synchronization between the sender machine
and the receiver device. More precisely, when there is a long sequence of "0" or
"1" symbols it becomes rather difficult to understand how many of them are being
transmitted. For this purpose, before modulating and transmitting the signal, is
extremely helpful to perform a logical XOR to every codeword with a pseudo-random
sequence, called scambling key. This is the purpose of the scrambling function: it
applies an exclusive OR bitwise with a key that is known both from the source and
the destination.

1 function scrambled_sequence = scrambling(unscrambled_sequence,

scrambler_key)

2 % Initialize the output sequence

3 scrambled_sequence = [];

4

5 % Determine the length of the scrambler key

6 codeword_length = length(scrambler_key);

7

8 % Loop through the input sequence in codeword-sized chunks

9 for i = 1 : length(unscrambled_sequence) / codeword_length

10 % Extract the current codeword from the input sequence

11 current_codeword = unscrambled_sequence(codeword_length *

(i - 1) + 1 : codeword_length * i);

12

13 % Perform XOR operation with the scrambler key

14 scrambled_codeword = xor(current_codeword, scrambler_key);

15

16 % Append the scrambled codeword to the output sequence

17 scrambled_sequence = [scrambled_sequence,

scrambled_codeword];

18 end

19 end

There is no need to create the descrambling function because the XOR operation is
cyclical: performing this operation two times to a sequence of binary numbers will
return the initial sequence. In this case, the function has been created just for better
clarity and readability.

1 function unscrambled_sequence = descrambling(scrambled_sequence,

scrambler_key)

2 % Utilize the scrambling function in reverse to perform descrambling

3 unscrambled_sequence = scrambling(scrambled_sequence,

scrambler_key);

4 end
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14 Modulation and noise

After translating, coding, mixing and changing the sequence it is finally time to
simulate the signal transmission process. In this case, the Binary Phase Shift Keying
has been utilized to modulate and demodulate the binary sequence. To create this
type of signal, it is necessary to create the carrier signal which is a sine wave with
the properties given in the initial parameters. Then the carrier signal energy and
its length are stored to calculate the Gaussian White Noise afterwards. The BPSK
modulation is performed by creating an NRZ signal of the sequence and then using
the Kronecker product as shown below.

1 % Define the time-step

2 delta_t = tau / samples_per_symbol;

3

4 % Time intervals for one symbol

5 time_intervals = 0: delta_t: tau - delta_t;

6

7 % Create the carrier signal

8 carrier_signal = sin(2 * pi * f0 * time_intervals);

9

10 % Calculate the energy per symbol

11 Eb = dot(carrier_signal, carrier_signal);

12

13 % Save length of encoded sequence

14 N = length(binary_sequence);

15

16 % Perform BPSK modulation

17 BPSK_signal = kron(-2 * binary_sequence + 1, carrier_signal);

To add the GWN is necessary to calculate the noise signal by reversing the SNR
formula to obtain the noise spectral power density N0. With this value, it is possible
to obtain the standard deviation, σ and then generate the noise signal which will
be added to the modulated signal to compute the disturbed signal.

1 % Reversed SNR formula

2 EbN0 = 10^(SNR / 10);

3

4 % Obtain noise spectral power density

5 N0 = Eb./EbN0;

6

7 % Calculate sigma for BPSK

8 sigma = sqrt(N0 / 2);

9

10 % Create noise signal

11 noise_signal = sigma * randn(1, N * samples_per_symbol);

12

13 % Create disturbed signal by adding noise to the modulated signal

14 disturbed_signal = BPSK_signal + noise_signal;

The signal detection is performed using the correlation receiver approach. The dis-
turbed signal is sliced and then it is compared to its respective modulation threshold,
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which is 0 in this case.

1 % Slice the received signal into segments in each column

2 sliced_disturbed_signal = reshape(disturbed_signal,

samples_per_symbol, N);

3

4 % Detect the signal with the BPSK threshold

5 detected_signal = carrier_signal * sliced_disturbed_signal < 0;

Tests

All the above-displayed functions have been meticulously tested using newly random-
generated sequences hundreds of times to spot and correct any type of logical error.
The tests are public and can be found under the folder /src/func/test in the public
repository mentioned at the very beginning of this document.
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https://github.com/imAlessas/transmission-simulation/tree/main/src/func/test
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